skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shang, Yuxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The dissolution of a polymeric solid typically starts with the absorption of solvent molecules, followed by swelling and volume expansion. Only when the extent of swelling reaches a threshold can the polymer chains be disentangled and then dissolved into the solvent. When the polymeric solid is encapsulated in a rigid shell, the swelling process will be impeded. Despite the widespread use of this process, it is rarely discussed in the literature how the polymeric solid is dissolved from the core for the generation of colloidal hollow particles. Recent studies have started to shed light on the mechanistic details involved in the formation of hollow particles through a template‐directed process. Depending on the nature of the material used for the template, the removal of the template may involve different mechanisms and pathways, leading to the formation of distinct products. Here, a number of examples are used to illustrate this important phenomenon that is largely neglected in the literature. This article also discusses how the swelling of a polymeric template encapsulated in a rigid shell can be leveraged to fabricate new types of functional colloidal particles. 
    more » « less